
Excitation of ordinary and extraordinary focus wave modes in a uniaxial crystal

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 2817

(http://iopscience.iop.org/0305-4470/33/14/314)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 2817–2827. Printed in the UK PII: S0305-4470(00)04724-7

Excitation of ordinary and extraordinary focus wave modes in
a uniaxial crystal
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86 Bis Route de Croissy, 78110 Le Vésinet, France

Received 2 June 1999

Abstract. We proved in previous works that two kinds of focus wave modes, ordinary and
extraordinary, can propagate in a dielectric uniaxial crystal. We now discuss the conditions for
reflection and refraction of focus wave modes incident from vacuum on such a crystal. Then we
look for the amplitudes of the reflected, refracted, ordinary and extraordinary focus wave modes.

1. Introduction

In an attempt to transmit energy in a non-conventional way, people paid attention, some years
ago, to particular solutions of Maxwell’s and the wave equations, i.e. the so-called focus
wave modes (FWMs) [1, 2] which have the property of propagating without dispersion. In
fact, FWMs are a special class of solutions called relatively undistorted progressing waves by
Courant and Hilbert [3]: these waves keep their identity established by their phase throughout
their lifetime with an amplitude which decreases with time. Many works [4–8] have been
devoted to the physical properties of FWMs which are modulated Gaussian beams and appear
as the relativistic generalization of conventional Gaussian beams [9].

On the other hand, the importance especially in optics of anisotropic media such as
dielectric crystals, plasma, ferrite and so on, is well known [10]. So, it is natural to inquire
how FWMs behave in these media and recently [11] we have analysed the kinds of FWMs
which are able to propagate in uniaxial anisotropic crystals. We continue this work here by
investigating what happens to a FWM incident from free space on a crystal and first we define
more accurately the problem to be tackled.

With coordinates along the principal axes of the permittivity tensor, the uniaxial anisotropic
dielectrics are defined by the constitutive relations

Dx,y = εEx,y Dz = ηEz B = µH (1)

in which for monochromatic fields, ε, η, µ, are constant scalars. A monochromatic FWM
incident from free space on the face z = 0 of a slab made of a material with the constitutive
relations (1), normal to the optical axis oz, will give rise to a transmitted and a reflected field.
We first consider the nature of the transmitted field, confining our attention to finding the
direction of propagation of the disturbance within the crystal and outside the opposite face
z = d of the slab. Then, expressions for the amplitude ratios (corresponding to the Fresnel
formulae) of the waves excited in the crystal are investigated.
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To find the conditions for reflection and refraction, one has just to work with the phase
function exp(i), i = √

1, in which , as proved in [3], is a solution of the characteristic
equation of Maxwell’s equations. In free space, this characteristic equation is [3]

(∂x)2 + (∂y)2 + (∂z)2 − c−2(∂t)2 = 0 (2)

in which c is the velocity of light, while in the crystal (1) we have [11] for the extraordinary
wave with n2 = εµ,m2 = ηµ

m−2[(∂x)2 + (∂y)2] + n−2(∂z)2 − c−2(∂t)2 = 0 (3a)

and for the ordinary wave

n−2[(∂x)2 + (∂y)2 + (∂z)2] − c−2(∂t)2 = 0. (3b)

So, we have first to find the FWM solutions of equations (2), (3a) and (3b) and then to match
these solutions on the interface z = 0 between free space and the crystal to satisfy the continuity
of the transverse components of the wavevector k = grad , that is

(∂x)z=0− = (∂x)z=0+ (∂y)z=0− = (∂y)z=0+. (4)

These boundary conditions give the usual Descartes–Snell law when the phase  is a linear
function of t and x (harmonic plane waves) which is not the case for FWMs.

For the sake of simplicity, we start this investigation with the case of a phase not depending
on one coordinate, say y. Then, one has a two-dimensional problem corresponding to the
propagation of transverse magnetic (TM) and transverse electric (TE) electromagnetic FWMs
and it was proved in [11] that the phase of TM and TE waves is a solution of equations (3a)
and (3b), respectively (with of course ∂y = 0).

2. Refraction of TM and TE focus wave modes

We use the subscripts i and t to denote quantities connected with the incident and refracted
fields, respectively. The phase of TM and TE FWMs propagating in free space along a direction
making an angle ui with the z-axis and satisfying equation (2) is [1, 2, 12]

i = ki[ct − Zi − X2
i (a + ct + Zi)

−1] (5)

Zi = z cos ui + x sin ui Xi = x cos ui − z sin ui (5a)

in which ki is the wavenumber, while a = iw is a purely imaginary parameter with w playing
the role of the beam half-width at the origin of a Gaussian beam.

For a TM FWM propagating within the crystal in a direction making the angle ut with
respect to the principal axis of the crystal (1), the phase t solution of equation (3a) is [11]

t = kt[ct − Zt − X2
t (a + ct + Zt)

−1] (6)

Zt = nz cos ut + mx ′ sin ut Xt = mx ′ cos ut − nz sin ut (6a)

in which, for reasons to become clear soon, we use a new system of coordinates (x ′, z).
Changing m into n in (6a) gives the phase of the TE FWM solution of equation (3b).

To discuss the first condition (4) (the second one is satisfied trivially), we use (5a) to write
(5)

i = ki[a(ct − z cos ui − x sin ui) + c2t2 − x2 − z2](a + ct + z cos ui + x sin ui)
−1 (7)
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and a simple calculation gives

(∂xi)z=0 = −ki(2x + a sin ui)(a + ct + x sin ui)
−1

−ki sin ui[a(ct − x sin ui) + c2t2 − x2](a + ct + x sin ui)
−2. (7a)

Similarly, from (6) and (6a)

t = kt[a(ct − nz cos ut − mx ′ sin ut)

+c2t2 − m2x ′ 2 − n2z2](a + ct + nz cos ut + mx ′ sin ut)
−1 (8)

and

(∂xt)z=0 = −ktm(2mx ′ + a sin ut)(a + ct + mx ′ sin ut)
−1

−km sin ut[a(ct − mx ′ sin ut) + c2t2 − m2x ′ 2](a + ct + mx ′ sin ut)
−2. (8a)

One checks rather easily from the comparison of (7a) and (8a) that the continuity condition
(4) is satisfied provided that

sin ut = sin ui ktm = ki (mx ′ − x)z=0 = 0. (9)

So, when a TM FWM crosses the boundary z = 0, its direction ui is left unchanged but it
undergoes a frequency jump ω1 = kic ⇒ ωτ = ktc = m−1ω1 and a lateral shift x ⇒ x ′.

Substituting n for m into (6) and (9) gives, respectively, the phase of the TE FWM and
the refraction condition for a TE FWM,

sin ut = sin ui ktn = ki (nx ′ = x)x=0 = 0. (9a)

At the output z = d of the crystal slab, continuity requirements are satisfied with relations
dual to (9) and (9a) (so that the phase  is the same for the transmitted and incident FWM
which recovers its identity). However, taking into account dispersion, the matching condition
for frequency becomes m(ω)ω = ωi and this equation may have zero (total reflection), one or
several real solutions or even complex solutions supplying evanescent TM FWMs. One has a
similar result for TE FWMs with n(ω).

As an illustration, let us take ε = 1 − ω2
c (ω

2 − ωωb)
−1 in which ωb,c are constant (such

an expression can be used in the ionosphere [13]). Assuming µ = 1, the frequency condition
becomes

[1 − ω2
c (ω

2 + ωωb)
−1]1/2ω = ωi (10)

supplying the cubic equation

ω3 + ωbω
2 − (ω2

c + ω2
0)ω − ω2

i ωb = 0 (10a)

with zero, one or three real solutions.
So, the propagation within the crystal is not the same for TM and TE FWMs, in particular,

the velocity of the wavefront v = grad /(∂t) is different since one has according to (3a)
and (3b),

m−2v2
x + n−2v2

z = c2 v2
x + v2

z = n2c2 (11)

for TM and TE FWMs, respectively.

Remark. The conditions for refraction of FWMs are different from that for harmonic plane
waves due to the nonlinearity of their phase. However, when the parameter a tends to infinity,
we find from (5) and (6) the phases i = ki(ct−Zi), t = kt(ct−Zt), of harmonic plane waves
so that the continuity condition (4) becomes ki sin ui = kt sin ut supplying the Descartes–Snell
law if one disregards a priori, any possibility of a frequency jump. Mathematically, one could
have as a solution m sin ut = p sin ui, pkt = ki, where p is an arbitrary real number such as
m−1p sin ui � 1.
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3. Refraction of conventional focus wave modes

To describe an electromagnetic FWM incident from an arbitrary direction on the z = 0 face
of the crystal slab, we need the azimuthal angle vi in addition to the polar angle ui. Then, the
phase i in vacuum is still given by (5) with (5a) replaced by

Zi = r sin ui + z cos ui Xi = r cos ui + z sin ui r = x cos vi + y sin vi. (12)

The phase t of the extraordinary FWM in the dielectric slab is a solution of equation (3a),
the expression (6) is still valid with

Zt = mr ′ sin ut + nz cos ut Xt = mr ′ cos ut − nz sin ut r ′ = x ′ cos vt + y ′ sin vt

(13)

in which, for the same reasons as previously, we have introduced the system of coordinates
(x ′, y ′, z). Changing m into n in (13) gives the functions X,Z corresponding to the phase of
the ordinary FWM solution of equation (3b).

Substituting (12) into (5), we find for the phase of the incident field

i = ki[a(ct − r sin ui − z cos ui) + c2t2 − r2 − z2](a + ct + r sin ui + z cos ui)
−1 (14)

and a simple calculation gives

(∂xi)z=0 = −ki cos vi(2r + a sin ui)(a + ct + r sin ui)
−1

−ki sin ui cos vi[a(ct − r sin ui) + c2t2 − r2](a + ct + r sin ui)
−2 (14a)

(∂yi)z=0 = −ki sin vi(2r + a sin ui)(a + ct + r sin ui)
−1

−ki sin ui sin vi[a(ct − r sin ui) + c2t2 − r2](a + ct + r sin ui)
−2. (14b)

Substituting (13) into (6), we obtain

t = kt[a(ct − mr ′ sin ut − nz cos ut) + c2t2 − m2r ′ 2 − n2z2]

×(a + ct + mr ′ sin ut + nz cos ut)
−1 (15)

(∂xt)z=0 = −ktm cos vt(2mr ′ + a sin ut)(a + ct + mr ′ sin ut)
−1 − ktm sin ut cos vt

×[a(ct − mr ′ sin ut) + c2t2 − m2r ′ 2](a + ct + mr ′ sin ut)
−2 (15a)

(∂yt)z=0 = −ktm sin vt(2mr ′ + a sin ut)(a + ct + mr ′ sin ut)
−1 − ktm sin ut sin vt

×[a(ct − mr ′ sin ut) + c2t2 − m2r ′ 2](a + ct + mr ′ sin ut)
−2. (15b)

Substituting (14a), (15a) and (14b), (15b) into relations (4), one checks easily that the
conditions for refraction into an extraordinary wave are a simple generalization of (9)

ktm = ki sin ut = sin ui sin vt = sin vi

(mx ′ − x)z=0 = 0 (my ′ − y)z=0 = 0.
(16)

So, the direction of the incident FWM is left unchanged, while its frequency undergoes a jump
and its position in the slab undergoes a lateral shift in both the x and y directions.

Substituting n for m into (16) gives the conditions for the refraction into an ordinary FWM,

ktn = ki sin ut = sin ui sin vt = sin vi

(nx ′ − x)z=0 = 0 (nx ′ − x)z=0 = 0.
(16a)

All the discussion in the previous section holds valid, in particular the incident FWM, in spite of
being divided within the slab into ordinary and extraordinary components, recovers its identity
at the output of the crystal. The main difference, but an important one, is that ordinary and
extraordinary FWMs propagate simultaneously, and we will have to look after their amplitude
to know the part of the incident FWM that each of them carries away in the crystal. This work
is made easier if we first consider the excitation of TM and TE FWMs.
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4. Excitation of TM and TE focus wave modes

4.1. TM focus wave modes

Assuming the axes of coordinates in the directions of the principal axes of the permittivity
tensor, Maxwell’s equations for TM (Hy,Ex,Ez) electromagnetic waves are in the anisotropic
crystal (for simplicity, we suppose µ = 1)

∂zHy = −εc−1∂tEx ∂xHy = ηc−1∂tEz

c−1∂tHy = ∂xEz − ∂zEx.
(17)

The phase  of a TM FWM solution of equation (17) [11] is (with m = η1/2, n = ε1/2)

 = k(ct − Z − gX2) g = (a + ct + Z)−1 (18)

Z = nz cos u + mx ′ sin u X = mx ′ cos u − nz sin u. (18a)

Relations (17), (18) and (18a) are valid in free space with ε = η = 1,m = n = 1 and x ′

replaced by x. Then, using the subscripts i, r, t to label the quantities connected with incident,
reflected and refracted waves and taking into account the conditions (9) for refraction and the
Descartes–Snell laws for reflection, we obtain the relations

ut = ui ur = π − ui (19a)

kr = ki = ktm (mx ′ − x)z=0 = 0. (19b)

The FWM solution of equations (17) is obtained [11] by assuming that the component Hy of
the magnetic field is a scalar FWM with the phase , that is (i = √−1)

Hy = B(g)1/2 exp(i) (20)

in which g is expression (18) and B is an amplitude to be determined. Substituting (21) into
the first two equations of the system (17) gives the components of the electric field in the form

Ex,z = Bgx,z exp(i) (21)

and to obtain gx,z, we assume the wavenumber k to be large enough to make the derivatives
of gx,z negligible with respect to the derivatives of  (high-frequency approximation). Then,
substituting (21) and (22) into the first equation of the system (17) gives

(g)1/2∂z = −εgxc
−1∂t (22)

and using (18) a simple calculation gives

c−1∂t = k(1 + g2X2)

∂z = kn[− cos u(1 − g2X2) + 2 sin u gX].
(23)

So, according to (22) and (23)

gx = n(ε)−1(g)1/2[cos u(1 − g2X2) − 2 sin u gX](1 + g2X2)−1 (24)

which determines Ex in the frame of the high-frequency approximation. Changing
(cos u, sin u) into (sin u,− cos u) and ε, n into η,m in (24) gives the attenuation factor gz

of Ez

gz = m(η)−1(g)1/2[sin u(1 − g2X2) + 2 cos u gX](1 + g2X2)−1. (24a)

Expressions (20)–(24a), obtained for a TM focus wave mode in the crystal, are also valid in
free space with ε = η = 1 and m = n = 1. So, we know the expressions for the reflected
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and refracted focus wave modes that depend on the unknown amplitudes Br and Bt of the
component Hy to be obtained by using some boundary conditions on the surface of the slab.

These boundary conditions, demanding that across the interface z = 0 the tangential
components Hy,Ex should be continuous, are

(Hy,i + Hy,r − Hy,t)z=0 = 0 (25a)

(Ex,i + Ex,r − Ex,t)z=0 = 0. (25b)

We need the expressions for Hy,Ex on z = 0. From (18a), taking into account (19a) and
(19b) we obtain

(Zi = Zr = Zt)z=0 = x sin ui (Xi = −Xr = Xt)z=0 = x cos ui (26)

and using (18)

(i = r = tm)z=0 = Ω (gi = gr = gt)z=0 = g (27)

Ω = ki(ct − x sin ui − gx2 cos ui) g = (a + ct + x sin ui)
−1. (27a)

Substituting (27) into (20) gives

(Hy,i)z=0 = Big
1/2 exp(iΩ) (Hy,r)z=0 = Brg

1/2 exp(iΩ)

(Hy,t)z=0 = Btg
1/2 exp(im−1Ω).

(28)

On the other hand, using (18), (19), (26) and (24), a simple calculation gives

(gx,i = −gx,r = ε(n)−1gx,t)z=0 = gx (29)

gx = g1/2 cos ui(1 − g2x2 cos2 ui − 2gx sin ui)(1 + g2x2 cos2 ui)
−1 (29a)

so that according to (21),

(Ex,i)z=0 = Bigx exp(iΩ) (Ex,r)z=0 = −Brgx exp(iΩ)

(Ex,t)z=0 = nε−1Btgx exp(im−1Ω).
(30)

Substituting (28) and (30) into (25a) and (25b) gives

Bi + Br = Bt exp[iΩ(m−1 − 1)]

Bi − Br = Btnε
−1 exp[iΩ(m−1 − 1)]

(31)

and since n = √
ε,m = √

η we get finally with f (η) = exp[iΩ(1 − η−1/2)]

Br = (
√

ε − 1)(
√

ε + 1)−1B0 Bt = 2
√

ε(
√

ε − 1)−1B0f (η) (31a)

where Br and Bt are the Fresnel coefficients for the reflection and transmission of a TM FWM
incident on a dielectric uniaxial crystal.
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4.2. TE focus wave modes

Maxwell’s equations for TE (Ey,Hx,Hz) electromagnetic waves are in the anisotropic crystal,
still supposing µ = 1

∂zEy = c−1∂tHx ∂xEy = −c−1∂tHx

εc−1∂tEy = ∂zHx − ∂xHz.
(32)

The dielectric constant η does not intervene in this equation. It was shown in [11] that the
phase and the attenuation factor of the TE FWM, that we write n and gn, are still given by
(18) with m = n in (18a). In addition, changing Hy,Ex,Ez, into εEy,−Hx,−Hz, and making
η = 1 transform the Maxwell equations (17) into the Maxwell equations (32). So, introducing
an arbitrary amplitude C, the solution of equations (32) has the form

Ey = εC(gn)
1/2 exp(in)

Hx,z = Cgn,x,z exp(in)
(33)

with gn,x and gn,z deduced from (24) and (24a) by changing g into gn and making η = 1.
The solution (33) obtained for a TE FWM in the crystal is also valid with n = 1 and

ε = 1 in free space, in particular for the incident and reflected TE FWMs. So, we have
three amplitudes Ci, Cr, Ct , and to obtain the two unknowns Cr and Ct , we use the boundary
conditions

(Ey,i + Ey,r − Ey,t)z=0 = 0 (Hx,i + Hx,r − Hx,t)z=0 = 0. (34)

So we need the expressions of Ey and Hx on z = 0. The relations (26), (27) and (27a) are still
valid with m replaced by n. Then,

(Ey,i)z=0 = Cig
1/2 exp(iΩ) (Ey,r) = Crg

1/2 exp(iΩ)

(Ey,t)z=0 = ε−1Ctg
1/2 exp(in−1Ω).

(35)

Similarly, relations (29) and (29a) hold valid with m = n for gn, so

(Hx,i)z=0 = Cigx exp(iΩ) (Hx,r)z=0 = Crgx exp(iΩ)

(Hx,t)z=0 = nε−1cgx exp(in−1Ω).
(36)

Substituting (35) and (36) into (34) gives the relations

Ci + Cr = Ctε
−1 exp[i(n−1 − 1)]

Ci − Cr = nε−1Ct exp[i(n−1 − 1)]
(37)

with the solution in which f is the function defined previously,

Cr = (1 − √
ε)(1 +

√
ε)−1Ci Ct = 2ε(1 +

√
ε)−1f (ε)Ci. (38)

The Fresnel coefficients of TM and TE FWMs do not depend on the angle of incidence. Except
for the factor f they have the same expressions as the Fresnel coefficients for the reflection of
a plane wave at normal incidence [14].
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5. Excitation of ordinary and extraordinary focus wave modes

5.1. General formulation

The conventional FWMs [1, 2] depend on (x2 + y2) with g as an attenuation factor. However,
there also exists [15] a second kind of FWMs that depend on (x cos v + y sin v)2 with g1/2

as an attenuation factor. We work here with these last FWMs, since they reduce to TM and
TE FWMs for v = 0, making calculations easier. Note that an incident FWM generates four
waves: the ordinary and extraordinary waves within the crystal and the corresponding reflected
fields. We still use the subscripts i, r, t, to denote the incident, reflected and refracted waves,
but now r and t are the sets (ro, re) and (to, te). For simplicity we use r and t, when no confusion
is possible.

The phase  of an extraordinary FWM in the crystal is [15]

 = k(ct − Z − gX2) g = (a + ct + Z)−1 (39)

Z = mr sin u + nz cos u X = mr cos u − nz sin u r = x ′ cos v + y ′ sin v (39a)

with n = √
ε,m = √

η and using the coordinates x ′, y ′, as previously.
Changing m into n in (39a) gives the phase of the ordinary wave, while in free space for

the incident and reflected waves m = n = 1.
According to (16) and (16a) the conditions for reflection and refraction into an

extraordinary wave are

ut = ui ur = π − ui vi = vr = vt (40a)

ki = kr = mkt (mx ′ − x)z=0 = 0 (my ′ − y)z=0 = 0 r = re t = te.

(40b)

For the ordinary wave the conditions (40b) become

ki = kr = nkt (nx ′ − x)z=0 = 0 (ny ′ − y)z=0 = 0 r = ro t = to.

(40c)

We need the expressions of  and g on the boundary surface z = 0. From (39a) and from the
conditions (40a)–(40c), we get with ri = x cos vi + y sin vi,

(Zi,r,t)z=0 = ri sin ui (Xi,t)z=0 = ri cos ui (Xr)z=0 = −ri cos ui (41)

and substituting (41) into (39)

(i = r = mte = nto)z=0 = χ (gi,r,t)z=0 = γ (42)

χ = k(ct − ri sin ui − γ r2
i cos 2ui) γ = (a + ct + ri sin ui)

−1. (42a)

Now, we look for the extraordinary wave solutions of Maxwell’s equations within the crystal
in the following form, the subscript j takes the values 1, 2, 3, corresponding to the coordinates
x, y, z,

Ej = Eaj exp(is) Hj = Ebj exp(i) (43)

in which E is an amplitude to be determined and  is the phase (39). We assume the derivatives
of aj , bj to be negligible with respect to the derivatives of  (high frequency approximation).
So, with ∂β = (∂j , ∂0), ∂j = ∂/∂xj , ∂0 = c−1∂/∂t

∂βEj = i∂βEj ∂βHj = i∂βHj j = 1, 2, 3 (44)
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and we introduce the notation

wj = ∂j w0 = c−1∂t. (44a)

Then, with (44) and (44a) the Maxwell equations become

wybz − wzby = εw0ax wzbx − wxbz = εw0ay wxby − wybx = ηw0az

wyaz − wzay = −w0bx wzax − wxaz = −w0by wxay − wyax = −w0bz.
(45)

Since the phase  is a solution of the characteristic equation of Maxwell’s equations, the
homogeneous system (45) has an infinity of solutions which can be expressed in terms of one
of its unknowns, say a3. Then, to obtain a FWM solution of Maxwell’s equations with the
phase , we choose a3 so that Ez is a scalar FWM, that is a3 = g1/2 with g given by (39).

These results obtained for the extraordinary wave are also valid for the ordinary wave with
m = n and for the incident and reflected waves for m = n = 1. Similarly to (43), we write
the ordinary wave solution of Maxwell’s equations

Ej = Enan,j exp(in) Hnj = Enbn,j exp(in). (46)

So, an incident field with amplitude Ei generates four waves with the unknown amplitudes Er,
Et, (r = re, ro), (t = te, to) which can be obtained by imposing some boundary conditions on
the interface z = 0. These conditions require the continuity of the tangential components of
E and H , that is

[(Hi + Hr − Ht)x,y]z=0 = 0 [(Ei + Er − Et)x,y]z=0 = 0. (47)

However, solving the system (47) of four equations for the four unknown amplitudes is a
formidable task, so we shall proceed differently by using the results of section 4.

5.2. TE, TM formulation

According to (31) and (38), the coefficients of reflection Br, Cr, do not depend on the angle
u which suggests taking u = 0, while the conditions for reflection and refraction impose
vt = vr = vi = v. From now on, a double primed quantity denotes an expression in which
u = 0. Then, using (39a) the phase and the attenuation factor of the extraordinary focus wave
mode become with X = x cos v + y sin v

′′ = k(ct − nz − g′′m2X2) g′′ = (a + ct + nz)−1. (48a)

Setting m = n gives the phase and the attenuation factor ′′
n, g

′′
n , of the ordinary FWM

′′
n = k(ct − nz − g′′n2X2) g′′

n = g′′. (48b)

Then, using the coordinates X, Y = x sin v − y cos v, and the following components of
the electromagnetic field:

EX = Ex cos v + Ey sin v HY = Hx sin v − Hy cos v Ez (49a)

HX = Hx cos v + Hy sin v EX = Ex sin v − Ey cos v Hz. (49b)

One checks at once that (EX,Ez,HY ) with the phase ′′ is a TM field (note that ′′ and ′′
n do

not depend on Y ) satisfying the Maxwell equations (17) with ∂x changed into ∂X. Similarly,
(HX,Hz,EY ) with the phase ′′

n is a TE field solution of equations (32).
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Then, using (43), we may write (49a)

HY = bYE exp(i′′) EX = aXE exp(i′′) Ez = azE exp(i′′) (50)

bY = bx sin v − by cos v aX = ax cos v + ay sin v (50a)

while from (46) and (49b) we obtain

EY = aYEn exp(i′′
n) HX = bXEn exp(i′′

n) Hz = bzEn exp(i′′
n) (51)

aY = ax sin v − ay cos v bX = bx cos v + by sin v. (51a)

These fields depend on two unknown amplitudes E and En. From now on, we concentrate
on the components Ez and Hz. Identifying (50) and (51) with the TM and TE FWMs of
section 4, we have according to (27) and (33),

Ez = Bt[gz exp(i)]u=0

Hz = Ct[gn,z exp(in)]u=0

(52)

in which  and gz are given by (18) and (24a) which also supply n and gn,z by changing
m into n, while Bt and Ct are the Fresnel coefficients (31a) and (38). So from (50)–(52) we
obtain the relations that determine E and En in terms of Bt and Ct , that is finally in terms of
the incident amplitudes Bi and Ci,

azE exp(i′′) = Bt[gz exp(i)]u=0

bzEn exp(i′′) = Ct[gn,z exp(i)]u = 0.
(53)

However, in section 4, the TM and TE fields are two independent sets so that the amplitudes Bi

and Ci are arbitrary. The situation is different here since the fields (50) and (51) are connected
through relations (49) and one has to determine Bi and Ci in terms of the amplitude Ei of
the incident electromagnetic field. We remind the reader that quantities connected with the
incident field are deduced from quantities connected with the extraordinary field (respectively,
ordinary field) by making m = n = 1 (respectively n = 1). So, we find from (50) and (51)

Ei,z = EiWz Wz = [az exp(i′′)]m=n=1

Hi,z = EiWn,z Wn,z = [bz exp(i′′
n)]n=1

(54)

while relations (52) give

Ei,Z = BiWZ Wz = [gZ exp(i)]u=0,m=n=1

Hi,Z = CiWn,Z Wn,z = [gn,Z exp(in)]u=0,n=1

(55)

so that from (54) and (55)

Bi = EiWz/WZ Ci = EiWn,z/Wn,Z. (56)

So, we have obtained the amplitudes of the ordinary and extraordinary FWMs excited
in a uniaxial dielectric crystal by a FWM incident normally on the face z = 0 of the
crystal. However, as stated previously, this result does not depend on the angle of incidence.
Consequently, one may generalize the expressions obtained in this section to any angle
u ∈ [0, π/2) only by changing double primed into unprimed quantities.
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6. Discussion

We must first insist that in this series of papers on FWMs and crystals, we used a particular
kind of FWMs with the particular property of being easy to split into TE and TM components.
This is not the case for conventional FWMs [1, 2], for which propagation in anisotropic media
as well as their excitation is still an open problem.

FWMs (whether conventional or not) have a nonlinear phase which makes the analysis of
their behaviour and of their properties in many situations difficult when, for instance, scattering
and diffraction intervene. However, a counterpart to this nonlinearity is the simplification of
the conditions for refraction. Then, a dielectric uniaxial crystal appears as a separator of the
incident FWM into its TM and TE components, each propagating unperturbed in the crystal
except for a frequency jump and a lateral shift at the input. At the output of the crystal, the
two components rejuvenate the incident FWM with a decreased amplitude so that a uniaxial
crystal is an attenuator of FWMs.

This behaviour contrasts with that of plane waves where the relative (with respect to
FWM) complexity of Descartes–Snell laws and Fresnel coefficients that depend of the angle
of incidence, generates a great wealth of phenomena which have given rise to important works
[3, 14, 16–18].

One may wonder what would have happened if Nature had required its description to be
in terms of FWMs rather than plane waves.
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